On Bivariate Birkhoff Interpolation

F. J. Hack
Universität Duisburg, Fachbereich Mathematik, Lotharstraße 65, 4100 Duisburg, West Germany
Communicated by Oved Shisha

Received February 22, 1984; revised May 13, 1985

1. Introduction

In this paper we will give criteria for unique solvability of multivariate Birkhoff interpolation problems. In the bivariate case we mean by Birkhoff interpolation the following problem: Let $\mathscr{C}^{p}(G)$, with $p \in \mathbb{N}_{0}$ and $G \subset \mathbb{R}^{2}$ and compact, be the space of all real valued functions continuously differentiable of total order p on G, let $\Pi_{s}, s \in \mathbb{N}$, be the space of all polynomials of degree $\leqslant s$ in one real variable, and let $D_{x, y}^{i, j}$ for $(x, y) \in G$, be the functional $D_{x, y}^{i, j}(f)=f^{(i, j)}(x, y)\left(f \in \mathscr{C}^{i+j}(Q)\right)$. Let now $m, M, r \in \mathbb{N}_{0}$, $Z \subset\{1, \ldots, m\} \times\{0, \ldots, M\}$ with $\operatorname{card}(Z)=r+1$, and consider the base set of knots (cf. Definition 3.1)

$$
K=\left\{\left(x_{i}, y_{i . k: j}\right) \mid(i, k) \in Z, 1 \leqslant j \leqslant a_{i, k}\right\} \subset G
$$

with $a_{i, k} \in \mathbb{N}_{0}$ and the sets

$$
L_{i, k} \subset\left\{1, \ldots, a_{i, k}\right\} \times\{0, \ldots, M-k\}
$$

for $(i, k) \in Z$. Moreover, let $\left(i_{0}, k_{0}\right), \ldots,\left(i_{r}, k_{r}\right)$ be an ordering of Z with $\operatorname{card}\left(L_{i_{s}, k_{s}}\right) \geqslant \operatorname{card}\left(L_{i_{r}, k_{t}}\right)$ for $0 \leqslant s<t \leqslant r$. We investigate whether the problem

$$
\begin{align*}
& \left(\mathscr{C}^{M}(G), \sum_{s=0}^{r} \Pi_{s} \otimes \Pi_{\text {card }\left(L_{s, k} \cdot k_{s}\right.} ; D_{\left.x_{i}, y_{i, k j}\right)}^{k, l}:\right. \tag{1.1}\\
& \left.(i, k) \in Z,(j, l) \in L_{i, k},\left(x_{i}, y_{i, k ; j}\right) \in K\right)
\end{align*}
$$

is uniquely solvable, i.e., whether for every function $f \in \mathscr{C}^{M}(G)$ there exists exactly one $P \in \sum_{s=0}^{r} \prod_{s} \otimes \prod_{\mathrm{card}\left(L_{s}, k_{s}\right)}$ with $D_{x_{1}, y_{i, k}, k_{j}}^{k, 1}(P)=D_{x_{i}, y_{i, k}, k_{j}}^{k, l}(f)$ for all $(i, k) \in Z,(j, l) \in L_{i, k}$ and $\left(x_{i}, y_{i, k_{i} j}\right) \in K$ (For the theory of interpolation refer to Davis [4]).

To this end we introduce a method which interpolates with tensor-
functionals. It is similiar to the method used by Haussmann [12], but it yields an interpolation space independent of the dual functions of the functionals applied and it therefore gives sufficient conditions for unique solvability of the problem (1.1). We define and use two-dimensional incidence matrices corresponding to a problem (1.1). These matrices must be investigated for (conditional) regularity (cf. [14]).

2. The Interpolation Method

For $s=1, \ldots, M, M \in \mathbb{N}$, let F_{s}, G_{s} be finite dimensional vector spaces as well as spaces F, G with

$$
\begin{array}{lll}
F_{1} \subset \cdots \subset F_{M} \subset F, & \operatorname{dim} F_{s}=m_{s}, & m_{1}<\cdots<m_{M} \\
G \supset G_{1} \supset \cdots \supset G_{M}, & \operatorname{dim} G_{s}=n_{s}, & n_{1}>\cdots>n_{M} \tag{2.1}
\end{array}
$$

Further, let $\varphi_{1} \ldots, \varphi_{m_{M}} \in F^{*}$ and $\psi_{i, j} \in G^{*}, 1 \leqslant i \leqslant m_{M}, 1 \leqslant j \leqslant n_{r(i)}\left(F^{*}, G^{*}\right.$ denote the dual spaces of F, G and r is the map

$$
\left.r:\left\{1, \ldots, m_{M}\right\} \ni i \rightarrow \min \left\{s \mid i \leqslant m_{s}\right\} \in\{1, \ldots, M\}\right),
$$

be functionals so that the interpolation problems

$$
\begin{equation*}
U_{s}=\left(F, F_{s} ; \varphi_{1}, \ldots, \varphi_{m_{s}}\right), \quad 1 \leqslant s \leqslant M \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{i}=\left(G, G_{r(i)} ; \psi_{i, 1}, \ldots, \psi_{i, n_{r(i)}}\right), \quad 1 \leqslant i \leqslant m_{M}, \tag{2.3}
\end{equation*}
$$

are uniquely solvable.
Theorem 2.1. The interpolation problem

$$
\begin{equation*}
W=\left(F \otimes G, \sum_{s=1}^{M} F_{s} \otimes G_{s} ; \varphi_{i} \otimes \psi_{i, j}: 1 \leqslant i \leqslant m_{M}, 1 \leqslant j \leqslant n_{r(i)}\right) \tag{2.4}
\end{equation*}
$$

is uniquely solvable.
Proof. With $m_{0}:=0$ the dimension of $H:=\sum_{s=1}^{M} F_{s} \otimes G_{s}$ can be determined by

$$
\begin{equation*}
\operatorname{dim} H=\sum_{s=1}^{M}\left(m_{s}-m_{s-1}\right) \cdot n_{s} \tag{2.5}
\end{equation*}
$$

Since the interpolation problems $U_{s}, 1 \leqslant s \leqslant M$, and $V_{i}, 1 \leqslant i \leqslant m_{M}$, are uniquely solvable, there exists for every $s \in\{1, \ldots, M\}$ the dual basis
$\left\{f_{s, i} \mid 1 \leqslant i \leqslant m_{s}\right\}$ of $\left\{\varphi_{i \mid F_{s}} \mid 1 \leqslant i \leqslant m_{s}\right\}$ with reference to F_{s}, and for every $i \in\left\{1, \ldots, m_{M}\right\}$ the dual basis $\left\{g_{i, j} \mid 1 \leqslant j \leqslant n_{r(i)}\right\}$ of $\left\{\psi_{i, 1 \mid G_{r i,}}, \ldots, \psi_{\left.i, n_{r(i)} \mid G_{r, i}\right)}\right\}$ with reference to $G_{r(i)}$. For $k \in\left\{1, \ldots, m_{M}\right\}, l \in\left\{1, \ldots, n_{r(k)}\right\}$, we define

$$
\begin{align*}
a_{k, l}^{(0)}:= & f_{r(k), k} \otimes g_{k, l} \\
a_{k, l}^{(r)}:= & -\sum_{i=m_{r(k)+1+1+1}}^{m_{r(k)+1}} \sum_{i=1}^{n_{r(k)+1}} \sum_{4=0}^{1}\left(\varphi_{i} \otimes \psi_{i, j}\right)\left(a_{k, l}^{(q)}\right) \\
& \cdot f_{r(k)+t, i} \otimes g_{i, j}, \quad 1 \leqslant t \leqslant M-r(k), \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
h_{k . l}:=\sum_{t=0}^{M-r(k)} a_{k, l}^{(t)} \tag{2.7}
\end{equation*}
$$

Then for every $t \in\{0, \ldots, M-r(k)\}$,

$$
\begin{equation*}
a_{k . l}^{(t)} \in F_{r(k)+t} \otimes G_{r(k)+t} \tag{2.8}
\end{equation*}
$$

is valid. In particular $h_{k, l} \in H$ for all $1 \leqslant k \leqslant m_{M}, \quad 1 \leqslant l \leqslant n_{r(k)}$. For $1 \leqslant v \leqslant m_{r(k)}$ and $1 \leqslant w \leqslant n_{r(v)}$, it follows directly from (2.8) that

$$
\begin{equation*}
\left(\varphi_{v} \otimes \psi_{v, w}\right)\left(h_{k, l}\right)=\delta_{r, k} \cdot \delta_{w, l} \tag{2.9}
\end{equation*}
$$

For $v>m_{r(k)}, 1 \leqslant w \leqslant n_{r(v)}$, the following equations are valid:

$$
\begin{aligned}
& \left(\varphi_{v} \otimes \psi_{v, u}\right)\left(h_{k, l}\right)=\sum_{i=0}^{r(v)-r(k)}\left(\varphi_{v} \otimes \psi_{v, h^{\prime}}\right)\left(a_{k, l}^{(t)}\right) \\
& =\sum_{t=0}^{r(v)-r(k)}\left(\varphi_{v} \otimes \psi_{v, k}\right)\left(a_{k, l}^{(r)}\right)+\left(\varphi_{v} \otimes \psi_{v, u}\right)\left(a_{k, l}^{(r(v)} \quad r(k)\right) \\
& =\sum_{i=0}^{r(v)-r(k)-1}\left(\varphi_{v} \otimes \psi_{v, k}\right)\left(a_{k, l}^{(r)}\right)-\sum_{i=m_{r(i)-1}}^{m_{r(t)}} \sum_{j=1}^{n_{r(t)}} \\
& =\sum_{i=0}^{r(v)-r(k)-1}\left(\varphi_{i} \otimes \psi_{i, j}\right)\left(a_{k, l}^{(r)}\right) \varphi_{v}\left(f_{r(t), i}\right) \psi_{r, w}\left(g_{i, j}\right) \\
& =\sum_{t=0}^{r(v)-r(k)} 1\left(\varphi_{v} \otimes \psi_{i, w}\right)\left(a_{k, l}^{(t)}\right)-\sum_{t=0}^{r(t)-r(k)-1}\left(\varphi_{v} \otimes \psi_{v, w}\right)\left(a_{k, l}^{(t)}\right) .
\end{aligned}
$$

Therefore

$$
\left(\varphi_{i} \otimes \psi_{i, j}\right)\left(h_{k, l}\right)=\delta_{i, k} \cdot \delta_{j, l}
$$

holds for $1 \leqslant i, k \leqslant m_{M}, \quad 1 \leqslant j \leqslant n_{r(i)}, \quad 1 \leqslant l \leqslant n_{r(k)}$; i.e., the functionals $\varphi_{i} \otimes \psi_{i, j} 1 \leqslant i \leqslant m_{M}, 1 \leqslant j \leqslant n_{r(i)}$ are linearly independent in H^{*}. With (2.5) it follows that these functionals form a base of H^{*}.

To derive an explicit formula of the interpolation projector

$$
\begin{align*}
R: F \otimes G \ni h \rightarrow & \sum_{i=1}^{m_{M}} \sum_{j=1}^{n_{r(i)}}\left(\varphi_{i} \otimes \psi_{i, j}\right)(h) h_{i, j} \\
& \in \sum_{s=1}^{M} F_{s} \otimes G_{s}, \tag{2.10}
\end{align*}
$$

we define the following operators:

$$
\begin{align*}
& P_{s, i}: F \ni f \rightarrow \varphi_{i}(f) f_{s, i} \in \operatorname{span}\left\{f_{s, i}\right\}, \quad 1 \leqslant s \leqslant M, 1 \leqslant i \leqslant m_{s}, \tag{2.11}\\
& Q_{i}: G \ni g \rightarrow \sum_{i=1}^{n_{r(i)}} \psi_{i, j}(g) g_{i, j} \in G_{r(i)}, \quad 1 \leqslant i \leqslant m_{M}, \tag{2.12}
\end{align*}
$$

$$
\begin{equation*}
R_{s}: F \otimes G \ni h \rightarrow \sum_{i=1}^{m_{s}} \sum_{j=1}^{n_{n+i}}\left(\varphi_{i} \otimes \psi_{i, j}\right)(h) h_{s ; i, j} \in \sum_{t=1}^{s} F_{t} \otimes G_{t}, \quad 1 \leqslant s \leqslant M . \tag{2.13}
\end{equation*}
$$

The cardinal functions $h_{s, i, j}$ can be derived from (2.7) and (2.6):

$$
\begin{equation*}
h_{s: i, j}=\sum_{i=0}^{s-r(i)} a_{i, j}^{(t)} . \tag{2.14}
\end{equation*}
$$

Then for $2 \leqslant s \leqslant M, 1 \leqslant i \leqslant m_{s-1}$, and $1 \leqslant j \leqslant n_{r(i)}$, it holds that

$$
\begin{aligned}
h_{s, i, j} & =h_{s-1: i, j}+a_{i, j}^{(s-r(i))} \\
& =h_{s-1, i, j}-\sum_{k=m_{s}-1}^{m_{s}} \sum_{l=1}^{n_{s}}\left(\varphi_{k} \otimes \psi_{k, l}\right)\left(h_{s-1 ; i, i}\right) f_{s, k} \otimes g_{k, l},
\end{aligned}
$$

and therefore

$$
\begin{aligned}
R_{s}(h)= & R_{s-1}(h)+\sum_{i=m_{s-1}}^{m_{s}} \sum_{j=1}^{n_{s}}\left(\varphi_{i} \otimes \psi_{i, j}\right)(h) h_{s: i, j} \\
& -\sum_{i=1}^{m_{s-1}} \sum_{j=1}^{n_{s i l}} \sum_{k=m_{s-1}}^{m_{s}} \sum_{i=1}^{n_{s}}\left(\varphi_{i} \otimes \psi_{i, j}\right)(h) \\
& \times\left(\varphi_{k} \otimes \psi_{k, l}\right)\left(h_{s-1 ; i ; j}\right) f_{s, k} \otimes g_{k, l} \\
= & R_{s-1}(h)+\sum_{i=m_{s-1+1}}^{m_{s}} \sum_{j=1}^{n_{s}}\left(\varphi_{i} \otimes \psi_{i, j}\right)(h) f_{s, i} \otimes g_{i, j} \\
& -\sum_{i=m_{s-1}+1}^{m_{s}} \sum_{j=1}^{n_{s}} \sum_{k=1}^{m_{s-1}} \sum_{l=1}^{n_{n+(k)}}\left(\varphi_{k} \otimes \psi_{k, l}\right)(h) \\
& \times\left(\varphi_{i} \otimes \psi_{i, j}\right)\left(h_{s-1 ; k, l}\right) f_{s, i} \otimes g_{i, j}
\end{aligned}
$$

$$
\begin{aligned}
= & =R_{s}(h)+\sum_{i=m_{s,-1}+1}^{m_{s}} \sum_{j=1}^{n_{i}}\left(\varphi_{i} \otimes \psi_{i, j}\right)(h) f_{s, i} \otimes g_{i, i} \\
& -\sum_{i=m_{s-1}+1}^{m_{s}} \sum_{j=1}^{n_{s}}\left(\varphi_{i} \otimes \psi_{i, i}\right)\left(\sum_{k=1}^{m_{s-1}} \sum_{i=1}^{n_{i(k)}}\right. \\
& \times\left(\varphi_{k} \otimes \psi_{k, i}\right)(h) h_{s-1 ; k .} f_{s, i} \otimes g_{i, j} \\
= & R_{s-1}(h)+\sum_{i=m_{s-1}+1}^{m_{s}}\left(P_{s, i} \otimes Q_{i}\right)(h) \\
& -\sum_{i=m_{s-1}+1}^{m_{s}}\left(P_{s, i} \otimes Q_{i}\right)\left(R_{s-1}(h) .\right.
\end{aligned}
$$

From this results

Lemma 2.2. For every $s \in\{1, \ldots, M\}$,

$$
\begin{equation*}
R_{s}=R_{s-1}+\sum_{i=m_{1}+1}^{m_{i}}\left(P_{s, i} \otimes Q_{i}\right) \cdot\left(I d_{i \otimes G}-R_{s-1}\right) . \tag{2.15}
\end{equation*}
$$

Now we can verify an explicit representation formula:
Theorem 2.3. The interpolation operator R of the interpolation problem (2.4) has the following explicit form:

$$
\begin{align*}
R= & \sum_{i=1}^{m_{M}} P_{r(i)} \otimes Q_{i}+\sum_{s=1}^{M-1}(-1)^{s} \sum_{k_{0}=s+1}^{M} \sum_{k_{1}=s}^{k_{0}-1} \cdots \sum_{k_{s}=1}^{k_{s}} \sum^{1-1} \\
& \times \sum_{i_{0}=m_{k_{0}-1}+1}^{m_{k_{0}}} \cdots \sum_{i_{s}=m_{k_{s}}+1}^{k_{k_{s}}} P_{k_{0}, i_{0}} \cdots \cdot P_{k_{s, i}} \otimes Q_{i_{0}} \cdots \cdot Q_{i_{s}} . \tag{2.16}
\end{align*}
$$

(By $P_{1} \cdot P_{2}$, we mean the ordinary composition of the projections P_{1} and P_{2}.)
Proof. By induction we verify the corresponding formula for the operators $R_{t}, 1 \leqslant t \leqslant M$. For $t=1$,

$$
R_{1}=\sum_{t=1}^{m_{1}} P_{1, i} \otimes Q_{i}
$$

is valid. For $1 \leqslant t \leqslant M-1$, it follows with Lemma 2.2,

$$
\begin{aligned}
R_{t+1} & =R_{t}+\sum_{i=m_{t+1}}^{m_{t+1}}\left(P_{t+1, i} \otimes Q_{i}\right) \cdot\left(I d_{F \otimes G}-R_{t}\right) \\
& =R_{t}+\sum_{i=m_{t}+1}^{m_{t+1}} P_{t+1 . i} \otimes Q_{i}-\sum_{i=m_{t+1}}^{m_{t+1}}\left(P_{t+1 . i} \otimes Q_{i}\right) \cdot R_{i}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=1}^{m_{i}} P_{r(i), i} \otimes Q_{i}+\sum_{i=m_{i}+1}^{m_{t+1}} P_{t+1, i} \otimes Q_{i} \\
& +\sum_{s=1}^{i-1}(-1)^{s}(\mathbf{s}, \mathbf{t}) \sum P_{k_{0, i}, i_{0}} \cdots \cdot P_{k_{s, i}} \otimes Q_{i 0} \cdots \cdot Q_{i_{s}} \\
& -\sum_{i_{0}=m_{i}+1}^{m_{i+1}} \sum_{i_{i}=1}^{m_{i}} P_{i+1, i_{0}} \cdot P_{r\left(i_{i}, i_{i}\right.} \otimes Q_{i_{0}} \cdot Q_{i_{1}} \\
& -\sum_{i=m_{i}+1 s=1}^{m_{t+1}} \sum_{1}^{1-1}(-1)^{s}(\mathbf{s}, \mathbf{t}) \sum P_{t+1, i} \cdot P_{k_{0}, i_{0}} \cdots \cdots P_{k_{s, i}, i_{s}} \otimes Q_{i} \cdot Q_{i_{0}} \cdots \cdots Q_{i_{s}} .
\end{aligned}
$$

Here we have used (\mathbf{s}, \mathbf{t}) \sum instead of the multiple sum

$$
\sum_{k_{0}=s+1}^{\prime} \sum_{k_{1}=s}^{k_{0}-1} \cdots \sum_{k_{1}=1}^{k_{s}-1} \sum_{i_{0}=m_{k_{0}-1+1}}^{m_{k_{0}}} \cdots \sum_{i_{1}=m_{k_{s}-1+1}}^{m_{k_{s}}} .
$$

Because of

$$
\begin{aligned}
& -\sum_{i=m_{t}+1}^{m_{t+1}} \sum_{s=1}^{t-1}(-1)^{s}(\mathbf{s}, \mathbf{t}) \sum P_{t+1, i} \cdot P_{k_{0}, i_{0}} \cdots \cdot P_{k_{s, i}} \otimes Q_{i} \cdot Q_{i_{0}} \cdots \cdot Q_{i_{s}} \\
& =\sum_{s=2}^{1}(-1)^{s}(\mathbf{s}-\mathbf{1}, \mathbf{t}) \sum \sum_{i=m_{l}+1}^{m_{i+1}} P_{t+1, i} \cdot P_{k_{0}, i_{0}} \cdots \cdot P_{k_{s, 1, i, i_{s-1}}} \\
& \otimes Q_{i} \cdot Q_{i_{0}} \cdot \cdots \cdot Q_{i_{s-1}} \\
& =\sum_{s=2}^{1}(-1)^{s} \sum_{k_{1}=s}^{t} \sum_{k_{2}=s-1}^{k_{1}-1} \cdots \sum_{k_{s}=1}^{k_{s}-1} \sum_{i_{n}=m_{t}+1}^{m_{t+1}} \sum_{i_{1}=m_{k_{1}-1}+1}^{m_{k_{1}}} \\
& \cdots \sum_{i_{s}=m_{k_{s}-1+1}}^{m_{k_{s}}} P_{t+1, i_{0}} \cdot P_{k_{1}, i_{1}} \cdots \cdot P_{k_{s, i}, i_{s}} \otimes Q_{i_{0}} \cdots \cdot Q_{i_{s}} \\
& =\sum_{s=2}^{t}(-1)^{s} \sum_{k_{0}=s+1}^{t+1} \sum_{k_{1}=s}^{k_{0}-1} \cdots \sum_{k_{s}=1}^{k_{s}-1-1} \sum_{i_{0}=m_{k_{0}}}^{m_{k_{0}}} \\
& \cdots \sum_{i_{s}=m k_{s}-1+1}^{m k_{k_{s}}} P_{k_{0}, i_{0}} \cdots \cdot P_{k_{s}, i_{s}} \otimes Q_{i_{0}} \cdots Q_{i_{s}} \\
& -\sum_{s=2}^{t-1}(-1)^{s} \sum_{k_{0}=s+1}^{t} \sum_{k_{1}=s}^{k_{0}-1} \cdots^{k_{s}} \sum_{k_{s=1}}^{1-1} \sum_{i_{0}=m_{k_{0}-1}+1}^{m_{k_{0}}} \\
& \cdots \sum_{j_{s}=m k_{s}-1+1}^{m k_{s}} P_{k_{1}, i_{0}} \cdots \cdot P_{k_{s}, i_{s}} \otimes Q_{i_{0}} \cdot \cdots \cdot Q_{i_{s}}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{s=2}^{1}(-)^{*}(\mathbf{s}, \mathbf{t}) \sum P_{k_{0}, i_{0}} \cdots \cdot P_{k_{s}, i_{s}} \otimes Q_{i_{0}} \cdots \cdot Q_{i} \\
& -\sum_{s=1}^{1-1}(-1)^{s}(\mathbf{s}, \mathbf{t}) \sum P_{k_{0}, i_{0}} \cdots \cdot P_{k_{s, i}} \otimes Q_{i_{0}} \cdots \cdots Q_{i_{s}} \\
& -(\mathbf{1}, \mathbf{t}) \sum P_{k_{0}, i_{0}} \cdot P_{k_{1}, i_{1}} \otimes Q_{i_{0}} \cdot Q_{i_{1}}
\end{aligned}
$$

the correctness of the Theorem is proven.

3. Bivariate Birkhoff Interpolation

The bivariate Birkhoff interpolation problem (1.1) can be described by a (modified) incidence matrix. Let

$$
\mathscr{E}_{m, n}=\left(E_{i, k}\right)_{1 \leqslant i \leqslant m, 0 \leqslant k \leqslant M}
$$

be a $m \times(M+1)$-matrix with the properties
(i) For exactly $M+1$ pairs $(i, k) \in\{1, \ldots, m\} \times\{0, \ldots, M\}$, let $E_{i, k}=\left(e_{i, j}^{k, .}\right)_{1 \leqslant j \leqslant a_{i, k}, 0 \leqslant 1 \leqslant N_{i, k}}$ be $a_{i, k} \times\left(N_{i, k}+1\right)$-incidence matrices with $a_{i, k} \in \mathbb{N}, N_{i, k} \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\text { (ii) } E_{i, k}=0 \text { for all other }(i, k) \text {. } \tag{3.1}
\end{equation*}
$$

To simplify our notations, we define Z by

$$
\begin{equation*}
Z:=\left\{(i, k) \in\{1, \ldots, m\} \times\{0, \ldots, M\} \mid E_{i, k} \neq 0\right\} \tag{3.2}
\end{equation*}
$$

For given real numbers $x_{i}, y_{i, k: j}\left((i, k) \in Z, \quad 1 \leqslant j \leqslant a_{i, k}\right) \quad$ with $x_{1}<\cdots<x_{m}, y_{i, k ; 1}<\cdots<y_{i, k ; a_{i, k}}$, we consider for sufficiently differentiable $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the functionals

$$
\begin{equation*}
D_{i, j}^{k, l}=D_{x_{1}, v_{i, k}, j}^{k, l}, \quad(i, k) \in Z, \quad e_{i, j}^{k, l}=1 \tag{3.3}
\end{equation*}
$$

Obviously we can identify the matrix $\mathscr{E}_{m, M}$ with the Birkhoff conditions (3.3). Therefore we will call $\mathscr{E}_{m . M}$ with the conditions (3.1) a two-dimensional incidence matrix.

There are exactly one $p \in \mathbb{N}$ and a surjective map $g: Z \rightarrow\{1, \ldots, p\}$ with

$$
\begin{gather*}
g\left(i_{1}, k_{1}\right)=g\left(i_{2}, k_{2}\right) \quad \text { if and only if } N_{i_{1}, k_{1}}=N_{i_{2}, k_{2}}, \tag{3.4}\\
\left.N_{g},\right\}_{1}<\cdots<N_{g-4\{p\}} . \tag{3.5}
\end{gather*}
$$

For abbreviation we define for every $s \in\{1, \ldots, p\}$,

$$
\begin{align*}
& N_{s}:=N_{g^{-}\{\{s\}}, \\
& M_{s}:=\operatorname{card}\{(i, k) \in Z \mid g(i, k) \leqslant s\}-1 . \tag{3.6}
\end{align*}
$$

Example 3.1. The matrix

is a two-dimensional incidence matrix with $Z=\{(1,1),(2,0),(3,1)$, (3,2), (4, 0) \} and

$$
\begin{array}{ll}
N_{2,0}=N_{1}=4, & M_{1}=0, \\
N_{1,1}=N_{3,1}=N_{2}=3, & M_{2}=2, \\
N_{3,2}=N_{4.0}=N_{3}=1, & M_{3}=4 .
\end{array}
$$

For given $x_{1}<\cdots<x_{4}$ and

$$
\begin{aligned}
& y_{2,0 ; 1}<\cdots<y_{2,0 ; 3}, \\
& y_{1,1 ; 1}<\cdots<y_{1,1 ; 3^{\prime}} \\
& y_{3,1 ; 1}<\cdots<y_{3,1 ; 4}, \\
& y_{3,2 ; 1}<y_{3,2 ; 2}, \\
& y_{4,0 ; 1}<y_{4,0 ; 2},
\end{aligned}
$$

$\mathscr{E}_{4,4}$ corresponds to the interpolation conditions $\left\{D_{x_{i, ~}^{*}, v_{i, j}}^{k, 1} \mid(i, k) \in Z, e_{i, j}^{k,\}}=1\right\}$.

Definition 3.2. Let $\mathscr{C}_{m, M}$ be a two-dimensional incidence matrix.
(i) We will call a point set

$$
\begin{equation*}
\left\{\left(x_{i}, y_{i, k, j}\right) \mid(i, k) \in Z, 0 \leqslant j \leqslant a_{i, k}\right\} \subset \mathbb{R}^{2} \tag{3.7}
\end{equation*}
$$

a base set of knots for $\mathscr{E}_{m, M}$ if the following conditions hold:

$$
\begin{gathered}
x_{1}<\cdots<x_{m} \\
y_{i, k ; 1}<\cdots<x_{i, k: u_{i, k}}, \quad(i, k) \in Z .
\end{gathered}
$$

(ii) Let K be a base set of knots for $\mathscr{E}_{m, M} \cdot \mathscr{E}_{m, M}$ will be called conditionally regular with reference to K if for every set of real numbers $\left\{\alpha_{i, j}^{k, l} \mid(i, k) \in Z, e_{i, j}^{k, l}=1\right\}$ there exists a polynomial $P \in \sum_{s=1}^{p} \Pi_{M_{s}} \otimes \Pi_{N_{,}}$ ($M_{s}, N_{s}, 1 \leqslant s \leqslant p$, corresponding to (3.6)) with

$$
P^{(k, i)}\left(x_{i}, y_{i, k ; j}\right)=x_{i, j}^{k, l}
$$

(iii) $\mathscr{E}_{m, M}$ will be called regular if $\mathscr{E}_{m, M}$ is conditionally regular with reference to every base set of knots.

Now we will deduce sufficient conditions for regularity of two-dimensional incidence matrices by the method used in Section 1.

ThEOREM 3.3. Let $\mathscr{E}_{m, M}$ be a two-dimensional $m \times(M+1)$-incidence matrix as well as $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ a knot sequence (i.e., $x_{1}<\cdots<x_{m}$). For every $s \in\{1, \ldots, p\}$ let the (one-dimensional) incidence matrices
$E_{s}=\left(e_{i, k}\right)_{1 \leqslant i \leqslant m, 0 \leqslant k \leqslant m_{s}}$ with $e_{i, k}=1$ if and only if $(i, k) \in Z$

$$
\begin{equation*}
\text { and } N_{i, k} \geqslant N_{s} \tag{3.8}
\end{equation*}
$$

be conditionally regular with reference to $\left(x_{1}, \ldots, x_{m}\right)$. Furthermore, for every $(i, k) \in Z$ let the $a_{i, k} \times\left(N_{i, k}+1\right)$-incidence matrices $E_{i, k}$ be conditionally regular with reference to a knot sequence ($y_{i, k ; 1}, \ldots, y_{i, k ; a_{i, k}}$). Then $\mathscr{E}_{m, M}$ is regular with reference to the base set of knots

$$
\left\{\left(x_{i}, y_{i, k ; j}\right) \mid(i, k) \in Z, 1 \leqslant j \leqslant a_{i, k}\right\} .
$$

Proof. We have to show that the interpolation problem

$$
\left(\mathscr{C}^{q}\left(\mathbb{R}^{2}\right), \sum_{s=1}^{p} \prod_{M_{s}} \otimes \prod_{N_{s}} ; D_{x_{i}, y_{i, k j}}^{k, l}:(i, k) \in Z, e_{i, j}^{k, \prime}=1\right)
$$

with $q=\max _{1 \leqslant s \leqslant p}\left\{M_{s}+N_{s}\right\}$ is uniquely solvable. According to the assumptions, the interpolation problems

$$
\left(\mathscr{C}^{M_{s}}(\mathbb{R}), \prod_{M_{s}} ; D_{x_{i}}^{k}: N_{i, k} \geqslant N_{s}\right), \quad 1 \leqslant s \leqslant p
$$

and

$$
\left(\mathscr{C}^{N_{s}}(\mathbb{R}), \prod_{N_{v}} ; D_{y, i, j}^{\prime} ; e_{i, j}^{k . l}=1\right), \quad(i, k) \in Z
$$

are uniquely solvable. Because of $D_{x_{i}, y_{i, k j} ;}^{k, l}=D_{x_{t}}^{k} \otimes D_{y_{i, k i j}}^{l}$, Theorem 3.3 follows from Theorem 2.1.

Corollary 3.4. If the incidence matrices E_{s} of (3.8) are regular for all $1 \leqslant s \leqslant p$ and also the incidence matrices $E_{i, k},(i, k) \in Z$, then $\mathscr{E}_{m, M}$ is regular.

Example 3.5. We will investigate the incidence matrix $\mathscr{E}_{4,4}$ in Example 3.1 for regularity: The incidence matrices $E_{i, k},(i, k) \in Z$, are all regular. Also the incidence matrices

$$
\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

are regular. Therefore $\mathscr{E}_{4,4}$ is regular and the interpolation problem

$$
\begin{gathered}
\left(\mathscr{C}^{5}\left(\mathbb{R}^{2}\right), \prod_{0} \otimes \prod_{4}+\Pi_{2} \otimes \Pi_{3}+\prod_{4} \otimes \prod_{1} ; D_{x_{t}, y_{i, k j}}^{k, l} ;(i, k) \in Z,\right. \\
\left.e_{i, j}^{k, l}=1, \quad x_{1}<\cdots<x_{4}, y_{i, k ; 1}<\cdots<y_{i, k ; u_{i, k}}\right)
\end{gathered}
$$

is uniquely solvable.

4. Remarks

(i) Let the two-dimensional $M \times(N+1)$-incidence matrix $\mathscr{E}_{M, N}$ be equal to $\left(E_{i, k}\right)_{1 \leqslant i \leqslant M, 0 \leqslant k \leqslant N}$ with the regular $m_{i, k} \times\left(n_{i, k}+1\right)$-incidence $E_{i, k}=\left(e_{i, j}^{k, l}\right)_{1 \leqslant j \leqslant m_{i, k}, 0 \leqslant 1 \leqslant n_{i, k},}, \quad 1 \leqslant i \leqslant M, \quad 0 \leqslant k \leqslant N_{i} \quad\left(N_{i} \in \mathbb{N}_{0}\right.$, $\left.\sum_{i=1}^{M}\left(N_{i}+1\right)=N+1\right), m_{i, k} \in \mathbb{N}, n_{i, k} \in \mathbb{N}_{0}$, and $E_{i, k}=0$, for $k>N_{i}$. If

$$
\begin{equation*}
n_{i, k_{1}} \geqslant n_{i, k_{2}} \tag{4.1}
\end{equation*}
$$

holds for $k_{1}<k_{2} \leqslant N_{i}, 1 \leqslant i \leqslant M$, then $\mathscr{E}_{M, N}$ is regular.

Proof. There exist $p, n_{1}, \ldots, n_{p} \in \mathbb{N}, n_{1}<\cdots<n_{p}$, so that $n_{i, j} \in\left\{n_{1}, \ldots, n_{p}\right\}$ for all $1 \leqslant i \leqslant M, 0 \leqslant j \leqslant N_{i}$. For $i \in\{1, \ldots, p\}$, we define

$$
\begin{aligned}
Z_{i} & :=\left\{(j, l) \mid n_{j, l} \geqslant n_{i}, 1 \leqslant j \leqslant M, 0 \leqslant 1 \leqslant N_{i}\right\} \\
m_{i} & :=\operatorname{card}\left(Z_{i}\right)-1
\end{aligned}
$$

Because of (4.1) the interpolation problems

$$
\left(\mathscr{C}^{M}(\mathbb{R}), \prod_{m_{i}} ; D_{x_{j}}^{\prime}:(j, l) \in Z_{i}, x_{1}, \ldots, x_{m} \in \mathbb{R}, x_{i} \neq x_{j} \text { for } i \neq j\right)
$$

are Hermite interpolation problems and therefore uniquely solvable. With Theorem 2.1 the unique solvability of the interpolation problem

$$
\begin{aligned}
& \left(\mathscr{C}^{q}\left(\mathbb{R}^{2}\right), \sum_{s=1}^{p} \prod_{m_{s}} \otimes \prod_{n_{s}} ; D_{x_{i, i}, k, j}^{k, l}: 1 \leqslant i \leqslant M, 0 \leqslant k \leqslant N_{i}, e_{i, j}^{k, l}=1,\right. \\
& \left.\quad x_{1}, \ldots, x_{m} \in \mathbb{R}, x_{i} \neq x_{j} \text { for } i \neq j, y_{i, k: 1}<\cdots<y_{i, k ; m_{i, k}}\right)
\end{aligned}
$$

$\left(q=\max _{1 \leqslant s \leqslant p}\left\{m_{s}+n_{s}\right\}\right)$ is shown.
(ii) In [13] Haussmann and Knoop have shown that the following twodimensional incidence matrix

$$
\mathscr{E}=\left(\begin{array}{lllllc}
E_{1} & \cdots & E_{1} & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
E_{M} & \cdots & E_{M} & 0 & \cdots & 0
\end{array}\right)
$$

which always has the same Hermite matrices $E_{i}=\left(e_{k, i}\right)_{1 \leqslant k \leqslant m_{i} .0 \leqslant 1 \leqslant n_{,}, k}$ in the first N_{i} columns of the i th row, is regular with reference to every set of knots

$$
\left\{\left(x_{i}, y_{i, y}\right) \mid 1 \leqslant i \leqslant M, 1 \leqslant j \leqslant m_{i}\right\} .
$$

From Remark (i), it follows directly that \mathscr{E} is regular with reference to every base set

$$
\left\{\left(x_{i}, y_{i, k ; j}\right) \mid 1 \leqslant i \leqslant M, 0 \leqslant k \leqslant N_{i}, 1 \leqslant j \leqslant m_{i}\right\} .
$$

(iii) The interpolation method given in Section 2 covers all those results of multivariate interpolation deduced with Boolean methods given in [1-3], and in [5-11]. On the other hand, there exists a simple example solvable with this new method but that cannot be investigated by Boolean methods: We apply the interpolation conditions

$$
\begin{equation*}
\left\{D_{z}^{k, 1} \left\lvert\, z \in\left\{0, \frac{1}{2}, 1\right\}^{2} \backslash\left\{\left(\frac{1}{2}, \frac{1}{2}\right)\right\}\right., 0 \leqslant k+1 \leqslant 1\right\} . \tag{4.2}
\end{equation*}
$$

The incidence matrix corresponding to (4.2) is the following:

$$
\left[\begin{array}{lllll}
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) & 0 & 0 & 0
\end{array}\right) 001\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \quad 0 \begin{array}{llll}
0 & 0 & 0 \\
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) & \begin{array}{llll}
0 & 0 & 0 & 0
\end{array}
\end{array}
$$

With Remark (i) the regularity of the matrix is shown and the interpolation space is $H=\Pi_{1} \otimes \Pi_{5}+\Pi_{2} \otimes \Pi_{3}+\Pi_{4} \otimes \Pi_{2}+\Pi_{5} \otimes \Pi_{1}$. Especially the interpolation problem

$$
\left(\mathscr{C}^{1}\left(\mathbb{R}^{2}\right), H ; D_{z}^{k, 1}: z \in\left\{0, \frac{1}{2}, 1\right\}^{2} \backslash\left\{\left(\frac{1}{2}, \frac{1}{2}\right)\right\}, 0 \leqslant k+1 \leqslant 1\right\}
$$

is uniquely solvable.
(iv) The bivariate Birkhoff interpolation can be generalized in a canonical way. If we assume in (3.1) (i) that for $(i, k) \in Z$ the elements $E_{i, k}$ are n-dimensional incidence matrices ($n \in \mathbb{N}$), we get recursively a ($n+1$)dimensional incidence matrix.

References

1. G. Baszenski, F. J. Delvos, and K. Hackenberg, Remarks on reduced Hermite interpolation, in "Multivariate Approximation Theory II," International Series of Numerical Mathematics, Vol. 61, pp. 47-58, Birkhäuser, Basel, 1982.
2. G. Baszenski, F. J. Delvos, and H. Posdorf, Boolean methods in bivariate reduced Hermite interpolation, in "Multivariate Approximation Theory," International Series of Numerical Mathematics, Vol. 51, pp. 11-29, Birkhäuser, Basel, 1979.
3. G. Baszenski, F. J. Delvos, and H. Posdorf, Representation formulas for conforming bivariate interpolation, in "Approximation Theory III," Proc. Conf., Univ. Texas, Austin, Texas, 1980, pp. 193-198, Academic Press, New York, 1980.
4. P. J. Davis, "Interpolation and Approximation," Blaisdell, New York/Toronto/London, 1963.
5. F. J. Delvos, On discrete trivariate blending interpolation, in "Multivariate Approximation Theory II," International Series of Numerical Mathematics, Vol. 61, pp. 47-58, Birkhäuser, Basel, 1982.
6. F. J. Delvos and H. Posdorf, A representation formula for reduced Hermite interpolation, in "Numerische Methoden der Approximationstheorie, Bd. 4," International Series of Numerical Mathematics, Vol. 42, pp. 124-137, Birkhäuser, Basel, 1978.
7. F. J. Delvos and H. Posdorf, Boolesche zweidimensionale Lagrange-Interpolation. Computing 22 (1979), 311-323.
8. F. J. Delvos and H. Posdorf, Reduced trivariate Hermite interpolation, in "The Mathematics of Finite Elements and Applications III," Proc. Conf., Brunel Univ.. Uxbridge/U.K., 1978, pp. 77-82, Academic Press, London/New York, 1979.
9. F. J. Delvos and H. Posdorf, A Boolean method in bivariate interpolation, Rev. Anal. Numér. Théor. Approx. 9 (1980), 35-45.
10. F. J. Delvos and H. Posdorf, Generalized Biermann interpolation, Resultate Math. 5 (1982), 6-18.
11. F. J. Delvos, H. Posdorf, anid W. Schempp, Serendipity-type bivariate interpolation, in "Multivariate Approximation," Sympos. Univ. Durham, Durham, 1977, pp. 47-56, Academic Press, London/New York, 1978.
12. W. Haussmann, Tensorproduktmethoden bei mehrdimensionaler Interpolation, Math Z. 124 (1972), 191-198.
13. W. Haussmann and H. B. Knoop, On two-dimensional interpolation, in "Fourier Analysis and Approximation Theory," Vol. I, Colloq. Math. Soc. János Bolyai, 19, NorthHolland, Amsterdam, 1978.
14. G. G. Lorentz, K. Jetter, and S. D. Riemenschneider, "Birkhoff Interpolation," London/Amsterdam/Don Mills, Ontario/Sydney/Tokyo, 1983.
